1.一种双活塞对称阻尼式流量传感器探头,其特征在于:包括活塞缸(1)和设置于活塞缸(1)一侧的检测箱(2),活塞缸(1)的两端分别由端盖(3)封闭,活塞缸(1)的中部位置设置有将活塞缸(1)内部密封分隔为左右两个腔室的隔板(4),隔板(4)两侧的活塞缸(1)内分别滑动设置有一活塞(5),活塞(5)与其所在一侧的端盖(3)之间均设置有弹簧(6),弹簧(6)的一端固定于活塞(5)上,另一端固定于端盖(3)上,所述两端的端盖(3)上均开设有探头安置孔(7),每个探头安置孔(7)内均设置有光纤检测端(9),活塞(5)上正对光纤检测端(9)处设置有反光部件(8),光纤检测端(9)的光纤束由入射光纤和出射光纤集合铠装而成;检测箱(2)上具有流体入口(21)和流体出口(22)以使流体流经检测箱(2)的内部,活塞缸(1)中隔板(4)与两个活塞(5)之间的两个腔室分别通过一个流体通路(23)与检测箱(2)相连通,还包括气源(24),气源(24)的供气方向指向两个流体通路(23)的中间位置,且流体通路(23)和气源(24)分别设置于流体在检测箱(2)内部流通路径的相对两侧;所述传感器探头检测流体流量的方法,其特征在于,方法如下:若检测箱(2)内无被测流体流动,则活塞缸(1)中两个活塞(5)与隔板(4)之间所形成的两个腔室内的流体压力是相同的,两个活塞(5)的滑动距离相同,光纤检测端(9)检测到两腔室压差为零;若检测箱(2)内有被测流体流动,启动气源(24)吹气形成气流,则被测流体与气流在检测箱(2)内发生相互作用,使得被测流体和气流的初始动量发生改变,流体在检测箱(2)内发生偏移,以致进入活塞缸(1)的混合流体在隔板(4)的两侧形成压强差,高压一侧活塞(5)的滑移距离大,因此,高压一侧的光纤检测端(9)与反光部件(8)之距离较小,从而,经光电转换及信号处理计算后的输出值大小即可反映两侧检测腔内流体的压力差大小,再建立动量压差数学模型,推算得出流体动量;所述动量压差数学模型如下:分析传动量与压差之间的关系,设气流的速度为V
s,被测流体的速度为V,其中V
s是由气源(24)发射出来的气流速度,为已知量,活塞两端压强差与两个流体的动量M
s/M有关,其中M为被测流体动量,M
s为气流动量,分别与
![]()
与V
2成正比;M=kV
2;
![]()
k为常数;即:
![]()
则:
![]()
其中,k
1为已知量,从而在已知ΔP后即可求得V的值。
2.根据权利要求1所述双活塞对称阻尼式流量传感器探头,其特征在于:气源(24)的喷气方向与检测箱(2)内流体的流通方向相垂直。
3.根据权利要求1所述双活塞对称阻尼式流量传感器探头,其特征在于:隔板(4)与活塞缸(1)为一体式结构或隔板(4)密封固定于活塞缸(1)内。
4.根据权利要求1所述双活塞对称阻尼式流量传感器探头,其特征在于:活塞缸(1)内位于隔板(4)两侧的腔室、两个活塞(5)、两个弹簧(6)以及隔板(4)两侧的两个流体通路(23)均相对于隔板(4)对称设置,流体通路(23)上均设置有过滤网(25)。
5.根据权利要求1所述双活塞对称阻尼式流量传感器探头,其特征在于:两个探头安置孔(7)均开设在所在端盖(3)的正中心位置,两个探头安置孔(7)、两个活塞(5)及弹簧(6)均同轴设置,两个活塞(5)及两个弹簧(6)的规格及性能完全相同,反光部件(8)与光纤检测端(9)垂直设置,反光部件(8)为反光镜或反光片,自然状态下,其中一个光纤检测端(9)到该光纤检测端(9)所对应的反光部件(8)的距离与另一个光纤检测端(9)到该另一个光纤检测端(9)的距离相同,活塞(5)与活塞缸(1)的内壁之间设置有活塞密封圈(51)。
6.根据权利要求1所述双活塞对称阻尼式流量传感器探头,其特征在于:光纤检测端(9)与反光部件(8)之间还设置有透光片(31),透光片(31)为玻璃片,透光片(31)均设置于两个探头安置孔(7)位于两个端盖(3)内侧的端口处,且探头安置孔(7)的端口处通过透光片(31)封闭设置。